
Scalable Online Multi-Agent Path Planning: A Hybrid Method with Adaptive
Scheduling and Conflict-Minimizing Conflict-Based Search

Qihao Shen1, Dajun Guo1, Katherine Ip1, Guang Hu1, Yangmengfei Xu1, Chenyuan Zhang1, 2

1Faculty of Engineering and IT, the University of Melbourne
2Monash University

{qihaos, dajun.guo1, katherine.ip, ghu1,yangmengfeix}@student.unimelb.edu.au, chenyuan.zhang@monash.edu

Abstract
Multi-Agent Path Finding (MAPF) focuses on computing
collision-free paths for multiple agents operating within
shared environments. The League of Robot Runners (LoRR)
competition challenges participants to develop coordination
strategies for teams of autonomous robots in dynamic, grid-
like settings.
To address the competition problem, we developed an in-
tegrated algorithm with distinct scheduling and planning
phases. In the scheduling phase, we propose a task allocation
strategy that accounts for both unassigned tasks and those al-
ready allocated but not yet initiated. Our approach supports
dynamic task reallocation whenever an alternative agent can
complete a task with a reduced makespan. This iterative pro-
cess continues until all agents are assigned unique tasks or a
predefined time limit is reached.
In the planning phase, we introduce an online variant of
Conflict-Based Search (CBS). Unlike classical CBS, which
guarantees optimality by expanding the lowest cost node at
the expense of high computational overhead, our method em-
ploys a conflict-minimization strategy, prioritizing nodes with
the fewest unresolved conflicts. This enables rapid generation
of feasible solutions under tight runtime constraints, with the
ability to incrementally improve plan quality.
Our algorithm does not rely on domain-specific tuning, al-
lowing it to generalize across different maps. In the LoRR
competition, our online CBS algorithm achieved fifth place
on the planner leaderboard.
Building on this foundation, we further developed two en-
hanced variants: a PASS-based algorithm and a partitioned-
graph approach, both of which demonstrated superior perfor-
mance on large-scale maps in our experimental evaluations.

1 Introduction
Multi-Agent Path Finding (MAPF) is a fundamental prob-
lem in artificial intelligence and robotics, focusing on com-
puting collision-free paths for multiple agents operating
in shared environments. This problem has significant real-
world applications, including warehouse automation, airport
ground operations, and autonomous vehicle coordination. To
advance research in this area, the League of Robot Run-
ners (LoRR), sponsored by Amazon Robotics, hosts com-
petitions that challenge participants to develop solutions

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for coordinating teams of autonomous robots in dynamic,
grid-like environments. These competitions emphasize real-
istic constraints such as turn costs and online task arrivals,
thereby promoting the development of scalable and practi-
cal solutions for automated logistics and warehouse automa-
tion. More specifically, addressing the online configuration
of multi-agent path planning and its integration with task al-
location requires a more efficient path planning component
and an effective task allocation component to augment ex-
isting offline methods (Sharon et al. 2015).

In the scheduling phase, the objective is to produce an
effective task allocation that facilitates shorter paths in the
subsequent planning phase. In online multi-agent systems,
tasks must be assigned efficiently within tight time con-
straints, and the complexity increases significantly with the
number of tasks and agents. To address this challenge, we
attempted to modify the greedy-assignment algorithm com-
bined with an iterative reallocation mechanism. This ap-
proach preserves the speed of greedy assignment while im-
proving the quality of suboptimal allocations in an online
style. Specifically, an agent can be reassigned to a different
task if it results in a lower completion cost. The aim is to
ensure fast and efficient task allocation across all agents.

In the planning phase, the objective is to plan colli-
sion–free trajectories for a set of agents operating in a spe-
cific environment. A powerful foundation is Conflict-Based
Search (Sharon et al. 2015), a hybrid coupled–decoupled al-
gorithm that proceeds in two levels. At the low level, CBS
computes an optimal path for each agent under the current
set of constraints. At the high level, it detects conflicts be-
tween paths of the agents, adds new constraints for conflict-
avoiding, and then re-invokes the low-level search to replan
the affected agents. This process repeats until either all con-
flicts are resolved or a predefined time bound is reached.
However, classical CBS is inherently offline and always ex-
pands the CT node with the lowest total path cost. While
this approach guarantees the optimality of the final solution,
it often fails to produce a feasible solution under tight time
budgets.

To overcome this limitation, we introduce an online CBS
variant that revises the node-selection heuristic and inte-
grates dynamic subgoaling. Rather than ordering CT nodes
by total cost, our method expands the node with the fewest
unresolved conflicts at each step. Intuitively, this ”conflict-

minimization” strategy accelerates the discovery of a first
feasible (conflict-free) solution, which can then be incre-
mentally refined toward higher quality if more time is avail-
able. Moreover, to further improve performance on large-
scale maps, we establish a dynamic subgoaling mechanism:
For each CT node, we record the time step of its earliest
conflict. We then select the one whose earliest conflict time
is the latest, and designate this node as the subgoal. This
ensures that we can always find a short-term conflict-free
solution.

Building upon our online CBS algorithm, we also develop
and evaluate two additional enhancements: PASS and Sub-
graph Partitioning (SP), which both can further optimize
online CBS on large-scale maps. Our experimental results
show that the online CBS variant and additional enhance-
ments can outperform the default Priority Inheritance with
Backtracking (PIBT) algorithm provided by the League of
Robot Runners.

In summary, we propose a novel task allocation strat-
egy coupled with a CBS variant that performs planning fol-
lowing task assignment. Notably, unlike many competition-
oriented approaches, our algorithm does not incorporate any
optimization tailored to the competition maps, highlighting
its potential for broader generalizability across diverse envi-
ronments.

2 Preprocessing Heuristic Table
In this section, we first describe how the layout information
is processed during the preprocessing stage of the competi-
tion. Specifically, we construct a heuristic table that serves
as a shared resource for multiple modules within our frame-
work.

The heuristic table H calculates and stores the shortest
actual map distances from any source location to any tar-
get location. It does this efficiently using a lazy-initialized
breadth-first search for each potential target. Initially, the
heuristic table is initialized by iterating through all possible
locations on the map. However, the state space in this com-
petition is determined not only by the location of each agent,
but also by the direction of each agent. Thus, we additionally
experimented with a more accurate distance estimation that
includes turning costs in the calculations. That is, a heuristic
lookup table for the pair of state tuple (location and direc-
tion).

This preprocessing procedure is used for both the schedul-
ing phase and the planning phase in our final submission
to the competition. Other preprocessing procedure attempts
have been made after the competition to optimize the plan-
ning phase, such as Partitioning, Heating Mapping, which
are introduced in Section 4.2 and Section 6.

3 Scheduling Phase
In the scheduling phase, we consider a set of free tasks T
that consists of all unassigned and unopened tasks and a set
of free agents Agt that consists of agents without assigned
tasks and agents with unopened tasks. We assign each free
agent to a free task with the minimum makespan to that

Algorithm 1: Task Scheduling
Input : env, Agt, T , H , M , P
Output : P

1 while Agt ̸= ∅ do
2 a← A.next agent();
3 best task ← null;
4 best makespan←∞;
5 for t ∈ T do
6 curr makespan← H[t.loc][a.loc];
7 if curr makespan < best makespan then
8 if P.find(t) and curr makespan > L[t]

then
9 continue;

10 best task ← t;
11 best makespan← curr makespan;

12 if P.find(best task) then
13 b← P.get index(best task);
14 A.add(b);
15 P [a]← best task;
16 L[best task]← best makespan;
17 return P ;

agent. The minimum makespan is estimated based on the ac-
tual map distance between the agent and the task, including
the cost of turning actions. A look-up table H that was pre-
pared in the pre-processing stage (See 2). Another look-up
table M stores the lowest makespan to complete each of the
tasks. In the situation where two agents are being assigned
to the same task, the agent with the lower makespan will
keep the task. The other agent will be assigned to the task
with the lowest makespan in the remaining tasks. The pro-
cess continues until each agent is assigned a unique task or
the time limit exceeds. The proposed task schedule is stored
in a list P with length equal to the total number of agents in
the environment.

4 Planning Phase
The planning phase is developed based on the Conflict-
Based Search (CBS) algorithm. Two different versions, in-
cluding the submitted version for the competition and the
newly developed version, are presented in this section.

4.1 Submitted Online CBS
This part details the planning algorithm we submitted to the
competition, where it secured fifth place on the final leader-
board.

The route for each agent is planned based on a Conflict-
Based Search (CBS) algorithm which takes the environment
env and pre-goal node p g n as input and generates the ac-
tion A for each agent. However, the original CBS is an of-
fline algorithm which doesn’t fit the needs in this applica-
tion. Thus, we developed an online version of it. Similarly to
the traditional CBS, our online CBS also contains two levels:
a low-level planner to plan a path for each agent with con-
straints; and, a high-level validator to detect the conflicts and

strategically call the low-level planner to replan with newly
added constraints. The low-level planner used in this work
is the Weighted Constrained A* (WCA∗). The whole process
of the proposed online CBS is presented in Algorithm 2.

Algorithm 2: Online CBS
Input : env, p g n
Output : A
Initialize: open← {}, root h← {}

1 Extract each agent’s (start, goal, pre action) from
env and p g n;

2 if current timestamp > 0 then
3 root h← carry-over from previous timestamp;
4 for each agent do
5 if agent.pre action = root h[agent].action[0]

and agent.start = root h[agent].path[1] then
6 root h[agent].path.remove first();
7 root h[agent].action.remove first();
8 else
9 if start = goal then

10 path← {}, action← {Wait};
11 root h[agent]← {path, action};
12 else
13 root h[agent]←

WCA∗(env, start, goal, {}, {});

14 open.add(root h);
15 found← false;
16 goal node← root h;
17 sub goal← root h ;
18 farthest timestamp t∗ ← 0;
19 while open ̸= ∅ do
20 n← open.pop();
21 c← get earliest conflict constraint(n);
22 if n.tearliest > t∗ then
23 t∗ ← n.tearliest, sub goal← n;
24 if n.num conflict = 0 then
25 if ¬found or n.cost < goal node.cost then
26 goal node← n, found← true;

27 (pi, pj , t)← c;
28 ni ← n with c added for agent i;
29 nj ← n with c added for agent j;
30 ni.path[i]←

WCA∗(env, starti, goali, ni.Vcon, ni.Econ);
31 nj .path[j]←

WCA∗(env, startj , goalj , nj .Vcon, nj .Econ);
32 open.push(ni); open.push(nj);
33 if ¬found then
34 goal node← sub goal;
35 Extract action A from goal node;
36 p g n← goal node;
37 return A;

At the beginning of the processing at each timestamp, the
online CBS will generate two empty lists, an open list open

and a root root h, and enter a pre-check process (line 2 to
13). At timestamp = 0, the low-level planner WCA∗ will be
called to generate an initial solution and save to rooth as the
root node for later processing. At the later timestamp, once
the online CBS is run, it will first verify and synchronize
each agent’s state between the carried-over node from the
previous timestamp and the agent’s current actual state. If
an agent has completed its original task and been assigned a
new task, which results in the absence of a feasible path, the
low-level algorithm will be called again to compute a new
initial solution for that agent.

High level In the high-level phase (Line 19-32 in Algo-
rithm 2), the algorithm, guided by a heuristic function, keeps
exploring the open list, which could potentially lead to a bet-
ter solution. While traditional CBS employs the path cost as
its heuristic, the online version must return a feasible solu-
tion (conflict-free next moves for all agents) within 1 second
or even less. The original heuristic struggles to quickly yield
feasible solutions in crowded multi-agent scenarios.

To solve this, instead of sorting the nodes by their costs,
we prioritize those with fewer conflicts. With this “greedy”
heuristic in the high-level search, a conflict-free solution can
be retrieved quickly. When all conflicts cannot be solved
within 1 second, we return the first actions of a solution that
contains the longest step before reaching its first conflict.
Once a feasible solution is found, the algorithm will utilize
any remaining time to refine it further for optimality.

When popping a node from the open list, we first check
for conflicts. If any exist, we prioritize resolving the conflict
occurring at the earliest timestamp.

During the conflict detection phase, a conflict C is repre-
sented as a tuple (pi, pj , t), where pi and pj denote the re-
spective states (including position and orientation) of agents
i and j at the time the conflict occurs, and t indicates the
timestamp at which the conflict happens. Once a conflict is
identified, the system resolves it by generating two new child
nodes. In each child node, a constraint is added for one of
the conflicting agents: in the first child node, agent i is pro-
hibited from occupying position pi at timestamp t, while in
the second child node, agent j is prohibited from occupying
position pj at the same timestamp. These newly constrained
nodes are then passed to the low-level planner to update the
paths.

Weighted Constrained A* As a preliminary attempt, we
employ Weighted Constrained A∗ (Algorithm 3) as our
path-planning algorithm for individual agents to retrieve a
conflict-free path efficiently. The weight factor w is set to
1.7, and the heuristic function used is manhattan distance
in our setting.

4.2 Additional techniques with online CBS
Now we will describe the additional modules we introduced
after the competition for further enhance the performance of
our algorithm.

PASS This is an additional technology that can enhance
our online CBS. In the PASS phase (Algorithm 4), we ex-
amine the remaining nodes in the open list. For each node, if

Algorithm 3: Weighted Constrained A* (WCA∗)
Input : env, start, goal, Vcon, Econ

Output : path, action
Initialize: closed← Vcon

weight w ← 1.7
h← get heuristic(env, start, goal)
root.path← {}
root.loc← start
root.action← {}
open.push(root)

1 while open ̸= ∅ do
2 curr ← open.pop();
3 if curr ∈ closed then
4 continue;
5 closed.push(curr);
6 if curr.loc = goal then
7 return (curr.path, curr.action[0]);
8 for next ∈ getNeighborLocs(curr.loc) do
9 action← getAction(curr.loc, next);

10 path′ ← curr.path ∪ {next};
11 action′ ← curr.action ∪ {action};
12 if violatesConstraints(path′, Econ) then
13 continue;
14 h← get heuristic(env, next, goal);
15 new node← (curr, w · h);
16 open.push(new node);

17 return (root.path, {Wait});

every agent’s next action matches the corresponding action
in our candidate feasible solution (to be returned), we then:

1. Trim the current timestamp from the node to align it with
the next timestamp’s state;

2. Store the modified node in a new open list;
3. Pass this updated open list to the subsequent timestamps;

Algorithm 4: PASS
Input : open list open, goal node goal node
Output : next open
Initialize: next open← {}

1 while open ̸= ∅ do
2 node← open.pop();
3 foreach agent i in node do
4 if

node[i].action[1] = goal node[i].action[1]
and |node[i].action| ≥ 2 then

5 next open.push(node);

6 return next open;

Subgraph Partitioning Since we need to efficiently find
feasible solutions on large maps, in addition to using
Weighted A∗, we developed a subgraph partitioning (SP)

Algorithm 5: Max-Min Sampling
Input : Set of points points, Environment env,

Number of centroids k
Output : Selected centroids interest points
Initialize: interest points← {},

selected← array of size |points|
initialized to false,
Randomly select a point p from points,
interest points.push(p)
selected[p]← true.

1 for i← 1 to k − 1 do
2 max min dist← −1
3 selected idx← −1
4 foreach j ∈ {0, 1, 2, . . . , |points| − 1} do
5 if not selected[j] then
6 min dist←∞
7 foreach p ∈ interest points do
8 dist← distance(env, points[j], p)
9 if dist < min dist then

10 min dist← dist

11 if min dist > max min dist then
12 max min dist← min dist
13 selected idx← j

14 if selected idx ̸= −1 then
15 interest points.push(points[selected idx])
16 selected[selected idx]← true

17 return: interest points;

algorithm during the preprocessing phase. This algorithm
aims to divide the large map into multiple smaller maps, al-
lowing the WCA∗ to find a solution much faster. This is done
by allowing the agent to find a constrained path towards each
border between the small sections that the agent needs to
travel in a greedy manner, instead of finding a constrained
path to the end.

The subgraph partitioning algorithm is divided into two
parts: finding the centroids and generating the Voronoi dia-
gram.

When selecting the centroids, we employ a Max-Min
Sampling strategy (Algorithm 5) to choose k points from
a set of points. The goal is to ensure that these k points are
as dispersed as possible in the space, maximizing the mini-
mum distance between any two points. The core logic of this
strategy is that, in each iteration, the newly selected point is
the one that is farthest from all the currently selected points.

To be specific, in the initial stage, we maintain a set called
selected to determine whether a point has been chosen, and
a set interest points to store the selected centroids. If we
want to select k points, in each of the k iterations, we will
traverse all the possible unselected points p, compute the
distance between p and each point in interest points, and
record the shortest distance as min dist. Finally, we select
the point p with the largest min dist in this iteration and
add it to interest points. After all k iterations, we return

Figure 1: City map by Subgraph Partition

interest points.
The Voronoi diagram (Choset and Burdick 1995) is an

algorithm that divides the plane into several regions, where
any point within a region is closer to its designated centroid
than to any other centroids.

We initialize a voronoi map of size rows ∗ cols, with
all values set to -1, representing unassigned regions (Algo-
rithm 6). Then, we iterate through each cell, and only if the
cell value is 0 (indicating it is valid), we proceed to find
the nearest centroid. For each unassigned cell, we use the
distance function to compute its distance to all centroids. If
the distance is smaller than the current minimum distance,
we update min dist and the corresponding centroid index.
Next, we store this centroid’s index in the corresponding
position of voronoi map. When the loop finishes, we re-
turn the complete voronoi map, where each point is labeled
with the index of its nearest centroid.

5 Evaluation
The algorithm’s performance is evaluated under three maps
with default settings: random-32-32-20 (Random map
with 100 agents), brc202d_500 (Game map with 500
agents), and paris_1_256_250 (Random map with 250
agents). Performance is measured by the total number of
tasks completed within 5, 000 timestamps.

5.1 Scheduling Phase
The evaluation was conducted using the default PIBT plan-
ning algorithm and the default heuristic table. In addition,
we tested our approach with a modified heuristic that in-
corporates both turning cost and map distance, providing
a more accurate estimate of traversal cost. The results are

Algorithm 6: Generate Voronoi Diagram
Input : Environment env, Number of rows rows,

Number of columns cols, Set of centroids
centroids

Output : Voronoi Map voronoi map
Initialize: map← env.map

voronoi map← array of size
rows× cols initialized to −1

1 for i← 0 to rows− 1 do
2 for j ← 0 to cols− 1 do
3 if map[i× cols+ j] = 0 then
4 min dist←∞
5 label← −1
6 for k ← 0 to |centroids| − 1 do
7 dist← distance(env, i× cols+

j, centroids[k].x× cols+
centroids[k].y)

8 if dist < min dist then
9 min dist← dist

10 label← k

11 voronoi map[i× cols+ j]← label

12 return: voronoi map;

compared against the competition’s default scheduling algo-
rithm, which uses a greedy task allocation strategy without
task reallocation.

Default Reallocation Modified Heuristic
random 8405 10035 10029

city 3556 4188 4309
game 3613 4679 4786

Table 1: Experiment results for scheduling phase

The results in Table 1 show that task reallocation signif-
icantly improves the performance of the greedy scheduling
algorithm. Allowing agents to reallocate tasks enables bet-
ter matching between agents and tasks over time. However,
using a more accurate heuristic that considers turning ac-
tions does not lead to a significant performance improve-
ment. This suggests that actual map distance alone is already
a sufficiently effective heuristic for task scheduling in this
setting.

5.2 Planning Phase

default Online CBS PASS SP
random 8405 9909 9287 9853

city 3556 4081 4109 4126
game 3613 × × 3943

Table 2: Experiment results for planning phase, where PASS
is the online CBS with the PASS phase, and SP is the online
CBS with both PASS and Subgraph Partitioning phases.

From experiment results in table 2, we can observe that
our uploaded online CBS outperforms the default PIBT al-
gorithm on both the random and city maps, which validates
that our algorithm performs as expected. On the random
map, the results of PASS are clearly worse than those of
online CBS and SP. This may be because, during the pass
phase, we did not estimate the quality of the nodes that are
passed to the next timestamp. As a result, we pass all nodes
with valid actions to the next timestamp without filtering. If
the next timestamp has enough time to resolve all the nodes,
this approach can naturally approach the optimal solution.
However, if congestion occurs at the next timestamp and we
have not applied a cost threshold to the passed nodes, it can
delay the time it takes for the high-level search to find a fea-
sible solution or improve the solution quality.

On the city map, the result of PASS is comparable to that
of online CBS. This may be because the city map is larger
than the random map, so an agent requires more timestamps
to complete its task, giving us more time to approach an op-
timal solution. In contrast, the random map is smaller, and
agents quickly complete their tasks and move on to the next
one, which amplifies the disadvantage of PASS.

Subgraph partition performs well on both the random and
city maps. On the random map, we set the number of center
points k = 1, making it essentially the same as online CBS.
Minor differences in results may stem from tie-breaking in
A*, where the search might randomly choose paths that lead
to more congestion later on. This is a potential direction for
future improvement. On the city map, we set k = 100, so
with a larger map, we have more time to find better solutions.

However, on the large map (game), our online CBS fre-
quently fails, making it difficult to obtain a good solution. In
contrast, the default algorithm has a mechanism that forces
agents to stop when conflicts occur, which helps maintain
feasibility even under congestion. As a result, it can still
provide a decent solution on large maps. Meanwhile, sub-
graph partition outperforms the default algorithm on the
game map, demonstrating that our algorithm design can ef-
fectively plan paths and obtain feasible solutions in large-
scale scenarios.

6 Future Directions
While we have introduced a range of techniques in this re-
port, many remain in the early stages of development and
present opportunities for further refinement and enhance-
ment. In particular, our current algorithm was unable to han-
dle the warehouse scenario within the competition’s time
constraints (1 second) due to the large number of agents,
despite significant optimizations to convert the original CBS
into an online version. This limitation is partly because we
did not incorporate any domain-specific optimizations that
exploit the symmetric structure of warehouse environments.
Future work should focus on further improving efficiency
while remaining agnostic to layout-specific information.

For the scheduling phase, a direction for future improve-
ment is to introduce a task queue that allows each agent to
maintain a list of candidate tasks, sorted by increasing esti-
mated cost. Instead of evaluating all tasks at every times-
tamp, agents can reference their precomputed queues to

make faster and more efficient allocation decisions. These
queues would be updated periodically to reflect changes in
task availability and agent positions. This approach can po-
tentially reduce computational overhead by decoupling cost
estimation from task allocation, thereby enabling more scal-
able and responsive scheduling.

In the current planning phase, our high-level search
adopts a simple greedy heuristic when expanding nodes:
nodes with fewer conflicts are given higher priority, based
on the assumption that resolving low-conflict nodes first will
accelerate progress toward a feasible solution. While this
approach is intuitive and lightweight, it lacks deeper con-
sideration of the cost to solve each conflict. As a direction
for future improvement, we propose to incorporate ideas
from LRTA*(k) (Learning Real-Time A*), as introduced by
Hernández and Meseguer (2005). Instead of relying solely
on static conflict counts, we intend to dynamically update
the cost of each node in the open list during every iteration.
This includes not only the immediate cost-to-go estimate but
also predictions about possible future constraints the agent
may encounter.

By estimating the cost of the potential conflict-free solu-
tion of a search node, we can make more informed decisions
during high-level node expansion. Such a framework has
the potential to significantly improve the planner’s efficiency
in exploring promising (efficient) feasible solutions earlier,
thereby moving toward globally better solutions faster.

Besides the high-level CBS, the low-level search to find a
constraint-free path can also be optimized. Instead of WCA∗,
some other search algorithm can be explored, such as Focal
Search (Barer et al. 2014). In addition, the integration of the
Subgraph Partitioning can also be improved by generating
optimal paths between the subgraphs in the preprocessing
phase using Graphs of Convex Sets.

Another potential future direction is to use the pre-
processing time to examine the map and generate some
“high-way” for the agents to move from one area to another
in a large map. Since agents on the high-way are follow-
ing the same direction, there would be no conflict for these
agents. The planning algorithm just needs to take care of
those agents that are not on the high-way, which would sig-
nificantly reduce the search time. The idea to generate this
high-way is by the frequency of a state that appears in the op-
timal solutions for any other state pairs. This idea is aligned
with the betweenness centrality (Brandes 2001). An exam-
ple of the generated heatmap for the Game map is provided
in Figure 2.

7 Conclusion
In conclusion, we presented the algorithm developed for our
participation in the LoRR competition. In the scheduling
phase, we introduced a dynamic task allocation strategy ca-
pable of assigning and reassigning tasks to agents in real
time. For the planning phase, we proposed an online variant
of Conflict-Based Search (CBS) that prioritizes nodes with
the fewest unresolved conflicts to efficiently generate feasi-
ble solutions. We further extended this planner with two en-
hanced variants: a PASS-based approach and a partitioned-
graph-based method. Both competition results and experi-

Figure 2: Partial of the betweenness centrality heatmap of
Game map.

mental evaluations demonstrate the strong performance and
generalizability of our approach in the absence of layout-
specific fine-tuning.

References
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In Proceedings of
the international symposium on combinatorial Search, vol-
ume 5, 19–27.
Brandes, U. 2001. A faster algorithm for betweenness cen-
trality. Journal of mathematical sociology, 25(2): 163–177.
Choset, H.; and Burdick, J. 1995. Sensor based planning.
I. The generalized Voronoi graph. In Proceedings of 1995
IEEE international conference on robotics and automation,
volume 2, 1649–1655. IEEE.
Hernández, C.; and Meseguer, P. 2005. LRTA*(k). In Pro-
ceedings of the 19th international joint conference on Artifi-
cial intelligence, 1238–1243.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial intelligence, 219: 40–66.

