Enhancing PIBT via multi-action operations

Egor Yukhnevich, Anton Andreychuk

Abstract

The League of Robot Runners is an Amazon Robotics-
sponsored competition focused on multi-robot coordi-
nation challenges (including dynamics, planning, task
assignment, and execution) that aims to advance re-
search in Multi-Agent Path Finding and Task Schedul-
ing with applications in warehouse logistics and man-
ufacturing. This report describes the solution that won
all competition nominations. The core feature is an en-
hanced PIBT approach (EPIBT) that efficiently gener-
ates collision-free actions for thousands of agents in
milliseconds while introducing multi-action operations
for better agent cooperation in congested areas. Un-
like windowed solvers planning for a specific depth,
our solution focuses on single multi-action operations.
Complementing EPIBT, our solution incorporates graph
guidance techniques, parallelized Large Neighborhood
Search for optimization, and a simple yet highly effi-
cient scheduler.

Introduction

Multi-agent Pathfinding (MAPF) is a well-known and ex-
tensively studied problem in which a group of agents, start-
ing from their initial locations, must reach designated goal
locations while avoiding collisions. Numerous variations
of this problem exist (Stern et al. 2019). The classical
MAPF problem is known to be NP-hard (Geft and Halperin
2022). Consequently, existing MAPF solvers that guaran-
tee finding an optimal solution — such as CBS (Sharon
et al. 2015) and its variants (Li et al. 2019; Boyarski et
al. 2015), BCP (Lam et al. 2022), ICTS (Sharon et al.
2013), and others — face significant challenges with run-
time and scalability as the number of agents increases. To
address these issues, suboptimal variants (Barer et al. 2014;
Huang, Dilkina, and Koenig 2021; Li, Ruml, and Koenig
2021) and anytime approaches, such as MAPF-LNS (Li et
al. 2022; Huang et al. 2022) and LaCAM* (Okumura 2023;
2024), have been developed. Anytime solvers often employ
extremely fast rule-based techniques, such as PIBT (Oku-
mura et al. 2022) or Push-and-Rotate (De Wilde, Ter Mors,
and Witteveen 2014), to quickly generate initial solutions,
which are then iteratively improved within a given time bud-
get.

However, the aforementioned solvers are designed for the
classical MAPF scenario, where all goal locations are known

in advance. Some algorithms leverage this assumption; for
example, LaCAM uses depth-first search to accelerate the
search process. In contrast, there are several modified MAPF
problem statements in which agents are assigned new goal
locations each time they reach their current goal. The lack of
information about future goals at the outset makes most tra-
ditional MAPF solvers unsuitable for these scenarios, which
are typically referred to as Lifelong MAPF (LMAPF). A fur-
ther variation of the LMAPF problem is Multi-agent Pickup
and Delivery (MAPD), where each agent is tasked with pick-
ing up an item from one location and delivering it to another.
This formulation is inspired by real-world applications, such
as autonomous warehouses where thousands of robots trans-
port goods. A related challenge is task assignment or task al-
location, which involves distributing tasks among agents to
maximize overall system efficiency. Both MAPD and task
allocation are closely related, and considering them jointly
can significantly enhance system performance.

The League of Robot Runners (Chan et al.) is a MAPF-
related competition that was held for the second time in
late 2024 — early 2025. Unlike the previous edition, this
year’s competition featured two combined tasks: multi-agent
pathfinding and task assignment. There were three main
tracks, requiring participants to solve either one of these
problems individually or to develop an approach that ad-
dresses both simultaneously. One of the core challenges
and distinguishing features of this competition is the ex-
tremely limited time allotted to the solver — just one sec-
ond to decide the next action for each agent, controlling up
to 10,000 agents. This stringent time constraint makes most
existing approaches impractical. In addition, the agents’ ac-
tion model includes rotations: each agent has an orientation
and can only move forward; to move in a different direction,
it must first perform a rotation. This action model further
increases the complexity of the task and restricts the appli-
cability of many existing solvers.

The winner of the last year’s competition introduced an
approach called WPPL (Jiang et al. 2024), which combines
Windowed PIBT with a Graph Guidance technique and
parallelized Large Neighborhood Search (LNS). Windowed
PIBT is employed to rapidly generate initial collision-free
actions for several upcoming steps. The Graph Guidance
component helps to reduce congestion among agents and
promotes a more even distribution across the map. Finally,

the LNS module optimizes the solution produced by PIBT,
making efficient use of the available computational time.

The proposed solution for the pathfinding problem em-
ploys similar components but differs in several key aspects.
Next we will describe in details the overall solution, and
EPIBT in particular.

Solution

The primary distinction of the designed solver lies in the
planner responsible for generating rapid initial solutions. A
major limitation of Windowed PIBT is that it is not designed
for action models involving rotations. By planning for mul-
tiple steps ahead rather than just one, Windowed PIBT par-
tially addresses the original PIBT’s drawback — namely, the
assumption that agents can vacate an occupied cell in a sin-
gle action, which is often not possible when rotations are
required. While multi-step planning makes PIBT applica-
ble to such action models, it is not as efficient as it could
be. To overcome these limitations, the proposed modifica-
tion, called Enhanced PIBT (EPIBT), introduces operations
composed of sequences of actions, enabling the resolution
of complex collisions that require multiple moves.

Enhanced PIBT

One of the most crucial aspects of EPIBT is the concept of
operations. Each operation consists of a sequence of actions
performed by an agent. We considered operations of lengths
3, 4, and 5. Figure 1 illustrates all cells and states that are
reachable with operations of different lengths. With an op-
eration length of 1, as in basic PIBT, only two cells (marked
in red) are reachable. This limited reachability significantly
restricts the ability to efficiently resolve collisions between
agents.

Although the maximum number of possible operations is
4length the actual number is much smaller because many op-
erations can be discarded. First, operations containing multi-
ple redundant rotation actions can be eliminated. Addition-
ally, it is unnecessary to consider operations that end with
rotations, since rotations do not change the agent’s position.
Instead, multiple operations such as FFW, FFR, and FFC can
be merged into a single FFW operation', with the h-value
of the successor state calculated based on the best heading
among the reachable ones. However, the number of opera-
tions still exceeds the number of possible reachable states.
Due to the presence of other agents in the workspace, it is
necessary to consider the time dimension and include wait
actions in operations, allowing an agent to reach a state later
if needed to avoid collisions. The actual number of oper-
ations that must be considered corresponds to the number
of possible sequences of cells that the agent occupies while
executing the operation. Table 1 shows how many different
cells and states can be reached depending on the operation
length, as well as the number of unique cell sequences. For
clarity, cells are positions with (4, j) coordinates, states ad-
ditionally include orientation (i.e., are defined by the tuple
(i,4,0)), while cell sequences are sequences of positions

"Note that F stands for the move forward action, W for wait, R
for rotate, and C for counterclockwise rotate

4
<,
4o
N
Us
fs | pe | g
I M S
&5 &4 &5
4 i 4 i {s
&S, S S B D
Us Vs Us Vs Us
Qo | pe | o | e | o | e | ge
D e PN I I A
&5 &4 &3 &2 3 4 05

A R VAR B VA

\V

Figure 1: Cells and states reachable with different length of
the operations. Different cell colors indicate the minimum
required length of the operation to reach the corresponding
cell. Arrows and numbers near them indicate the actual state
and number of actions required to reach it.

Length 1 2 3 4 5
Cells 2 5 11 21 35
States 4 10 23 48 88

Cells sequences | 2 6 17 48 136

Table 1: Number of possible reachable cells, states and
unique sequences of occupied cells based on length of the
operations.

with length corresponding to the column’s length value —
{(il,j1)7 (ig,jg), (’Lg,,jd)} if the length is 3.

Another important aspect of operations is the order in
which they are considered. In regular PIBT, actions are pri-
oritized based on the distance to the goal. In EPIBT, this
approach must be extended, as multiple states may have
the same h-value. To address this, we implemented a tie-
breaking mechanism that favors operations involving for-
ward movement. Empirically, this mechanism produced the
best results. We also limited the number of allowed colli-
sions during the execution of a given operation. Since PIBT
recursively invokes agents it interferes with to resolve col-
lisions, excessive recursion can significantly slow down the
process. Therefore, when evaluating possible operations, we
skip those that would result in collisions with more than one
agent. While the tie-breaking mechanism and collision limit
significantly improved the speed of our approach, we believe
there is still considerable room for improvement in how op-
erations are selected.

Algorithm 1 presents the pseudocode for EPIBT. It largely

follows the logic of the original PIBT approach, with several
key enhancements. By default, all agents are assigned a wait-
in-place action (lines 3-5). The default operation has length
1, but it’s still a sequence. The agents are then sorted based
on their distance to their respective goals (lines 6-8). The
main loop follows, where each agent that does not yet have
a non-default set of actions executes the EPIBT procedure
(lines 9-14).

During the EPIBT procedure, each agent attempts to se-
lect the most preferable set of actions. The order in which an
agent’s operations are considered is determined by the value
Wop = h(si,0p, g;)- v+ Bop, Where v and f3,, are weighting
coefficients. In our implementation, « is set to a high value,
making the second term, (3,,, primarily a tie-breaker when
two states have the same h-value. The [values for different
operations are chosen so that rotation actions are preferred
over wait actions, and movement actions are the most pre-
ferred. If an operation leads to an obstacle or outside the
grid, it is skipped (lines 19-20).

The procedure getPath(s;,d;) returns the sequence of
states occupied by the agent, starting from state s; and ex-
ecuting the sequence of actions d;. If the operation is valid
with respect to static obstacles, it is then checked for col-
lisions with other agents. For this, the getUsed(s;, op, P)
procedure is used, which returns the set of agent IDs that
would collide with agent ¢ if it attempted to perform the se-
quence of actions in operation op starting from state s;. If
the operation is collision-free, it is adopted as the agent’s
desired sequence of actions (lines 20-23). If it results in col-
lisions with two or more agents, the operation is skipped
(lines 24-25). If there is a collision with a single agent j, we
attempt to rebuild agent j’s sequence of actions, taking into
account that agent 7 wants to perform operation op. If this at-
tempt fails, the set of paths P is reverted to its previous state,
and the loop continues with the next most preferable opera-
tion. If all possible sequences fail and none can be executed
collision-free, the agent is assigned the default wait-in-place
action d’i (lines 13—14).

One more crucial difference from the original PIBT ap-
proach is that we allow agents to collide with high-priority
agents and force them to rebuild their operations. Accord-
ing to our empirical results, EPIBT performs better this
way. However, this change potentially violates the theoret-
ical guarantee of reachability to all goal locations that the
original approach provides.

Large Neighborhood Search

The solution produced by EPIBT is valid, collision-free, and
generated within milliseconds. However, it is constructed
in a prioritized manner based on a specific ordering of the
agents. To enhance solution quality and make efficient use of
the remaining computational time, we incorporated a Large
Neighborhood Search (LNS) algorithm based on simulated
annealing (SA). The process begins by running EPIBT to
obtain an initial solution, after which SA is applied to fur-
ther refine it.

At each SA step, a random agent r is selected, its path
is removed, and a path reconstruction algorithm — similar
to the standard recursive EPIBT method — is invoked. The

Algorithm 1 EPIBT

1: Input: graph G, starts {s1,...,8,}, goals {g1,...,gn}
2: Output: selected actions {d1,...,d,}
3: Preface: d; < {wait} fori=1,...,n
4: Preface: d; < {wait} fori=1,...,n
5: Preface: P + getPath(s;,d;) fori =1,...,n
6: p; < dist(s;, g;); foreachagenti =1,...,n
7. A+ {1,...,n}
8: sort A in ascending order of priorities p;
9: fori € Ado

10 if d; # {wait} then

11: continue

12: P « P\ getPath(s;, d;)

13: ifEPIBT(i) = failed then

14: P < P U getPath(s;, d})

15: procedure EPIBT(7)

16: C <+ op € Operations

17: sort C' in descending order of w,y,
18: for op € C do

19: if getPath(s;, op) ¢ G then

20: continue

21: if getUsed(s;, op, P) = () then

22: d; < op

23: P « P U getPath(s;, op)

24: return success

25: if |getUsed(s;, op, P)| > 2 then

26: continue

27: J € getUsed(s;, op, P)

28: P + P\ getPath(s;,d;)

29: P <+ P U getPath(s;, op)

30: d; < op

31: if EPIBT(j) = success then

32: return success

33: P + P\ getPath(s;, d;)

34: P < P U getPath(s;, d;)

36: return failed

key difference is that when choosing an operation, there is a
certain probability (0.3 in our implementation) of skipping
it. This introduces randomness into the recursion, ensuring
that repeated runs can yield different solutions. If the opera-
tions are successfully rebuilt using SA, we can either accept
the new solution or revert to the original one. As the SA met-
ric, we use the sum of w,, % p, for each agent, where p, is
the priority of agent r (ranging from O to 1, indicating how
close the agent is to its goal). This metric encourages agents
to complete their tasks as quickly as possible and proceed
to new ones — the higher the metric, the better the agents
are progressing toward their targets. According to the logic
of SA, we always accept changes that improve the metric,
but also have a small chance to accept changes that actually
make the solution worse. This is done to potentially escape
local maxima and find a global maximum. For the accep-
tance probability of changes with negative improvement, we

utilized the following equation:

S o =S new
Placcept) = exp (coreqg — Score)

T - Scoregq

In our implementation, the initial temperature value was
T = 0.001, and it was further reduced by a factor of 0.999
at every step. We utilized a fairly low initial temperature, as
the initial solution found by EPIBT has good quality, and we
wanted to avoid its degradation.

To leverage the multicore CPUs available in the compe-
tition, we ran multiple instances of EPIBT+LNS in parallel
and selected the best result among them. While this paral-
lelization approach is straightforward, it is not as efficient as
it could be with process synchronization. Our attempts to de-
velop a more advanced parallel EPIBT+LNS, where threads
actively communicate and share improvements, did not yield
better results. Nevertheless, we believe that further improve-
ments are possible in this area.

Graph Guidance

Last but not least, a key component of our path planning
solver is Graph Guidance. This is a relatively new and
actively developing technique in LMAPF, used to reduce
congestion among agents and distribute them more evenly
across the grid. One of the first papers to employ this tech-
nique was Follower (Skrynnik et al. 2024), which introduced
a hybrid approach combining search-based and learning-
based components in a single LMAPF solver. However, in
that work, graph guidance was just one part of the overall
solver and was not the main focus. A more in-depth ex-
ploration of graph guidance and its construction methods
was presented in (Zhang et al. 2024). The competition base-
line used the PIBT+traffic flow approach (Chen et al. 2024),
which also incorporates a form of graph guidance optimiza-
tion. All these studies have demonstrated the benefits of
modifying action costs to improve throughput and mitigate
the short-sighted behavior typical of solvers like PIBT.

In our solution, we did not use any existing graph guid-
ance method nor did we develop a new one from scratch. In-
stead, for the small random-32-32 map, we created a hand-
crafted grid with predefined costs. For other maps, we ap-
plied a simple rule-based approach, creating "highways” in
various directions.

Scheduler

In addition to the pathfinding component, it was necessary to
develop a module for distributing tasks among agents, i.e., a
scheduler. Due to the very limited time available — which
must be shared between both pathfinding and scheduling
— all our attempts to implement a more complex solver,
such as a parallelized version of the classical Hungarian
method (Kuhn 1955), were unsuccessful.

Instead, we implemented a simple yet effective approach
that is both fast and yields good results. For each agent r, we
maintain Pool(r) = {{(distance(r,task),task) | task €
Tasks} — an array of (distance, task) pairs, sorted by the
distance from agent r to each task. Each agent r prefers to
take the first task from its array Pool(r). However, the same

task may be the top choice for multiple agents, making it im-
possible for all of them to select it. To resolve such conflicts
and quickly find the most preferable agent-task pairs, we in-
sert the first element from each agent’s pool into a heap and
assign tasks by prioritizing agents with the shortest distance
to their chosen task. If an agent cannot take its preferred task
because it has already been assigned to another agent, the
next most preferred task from its pool is added to the heap.
This process continues until all agents have been assigned
tasks.

This greedy procedure for task allocation proved to be
both efficient and effective, allowing us to devote more com-
putational time to the pathfinding component and its opti-
mization via LNS. We believe that the lack of improvement
from more complex procedures is due to the imperfect esti-
mation of actual costs.

Disabling agents

Our solver, designed specifically for the competition, incor-
porated a technique tailored to improve performance on cer-
tain maps and under specific competition conditions. This
technique, inspired by WPPL, involves selectively disabling
agents. On the Game map, for example, the presence of
too many agents led to excessive interference and crowding
in narrow aisles. To reduce congestion and increase overall
throughput, we implemented the following strategy: at each
step, we selected the n agents closest to their targets to re-
main active, while the remaining agents were temporarily
disabled — that is, they stayed in place to avoid obstructing
others. After experimenting with several variants, we found
that the best results were achieved with n = 2500.

Experimental Evaluation

Additionally to the results, obtained on the instances from
the competition, we have run additional series of experi-
ments on three maps from the competition (random-32-32-
20, warehouse and brc202d) with varying number of agents
to evaluate the performance of the designed approach and
compare it with existing state-of-the-art approaches.

For this purpose, we have evaluated the following ap-
proaches:

* PIBT+GG. Our implementation of the basic algorithm.

* PIBT+traffic flow. Implementation of the basic planner
from the LoRR competition.

¢ EPIBT+GG. Baseline method to estimate how EPIBT
performs without LNS.

¢ EPIBT+LNS+GG. The final algorithm.

* WPPL+GG. The winner of LoRR 2023. Implementation
was taken from code archive of the competition as the
authors’ public implementation is occasionally made for
non-rotation model.

It is worth noting that in this experiment, we used our
scheduler for all methods. The results are presented in Fig-
ure 2. The top row shows the map visualizations, the mid-
dle row displays the average throughput achieved by each
method as a function of the number of agents, and the bot-
tom row presents the average decision time, i.e., the time

Table 2: Here are our competition results (EPIBT+LNS with some specific optimizations and tricks) and the results after the
competition of algorithms: PIBT, EPIBT and EPIBT+LNS. GG is enabled everywhere. During the competition, we have the

best solution in 6 out of 10 tests.

I \ Competition Results PIBT EPIBT EPIBT+LNS
nstance Agents Steps

| Tasks Score | Tasks Score | Tasks Score | Tasks Score
City-01 1500 3000 8420 0.997 7567 0.896 8378 0.992 8369 0.991
City-02 3000 3000 16787 0.987 7912 0.465 15899 0.935 16609 0.976
Game 6500 5000 23274 1 12342 0.530 21690 0.932 23303 1.001
Random-01 100 600 641 0.92 549 0.789 637 0.915 654 0.940
Random-02 200 600 1231 0.977 745 0.591 1066 0.846 1194 0.948
Random-03 400 800 2368 1 746 0.315 1619 0.684 2224 0.940
Random-04 700 1000 2585 1 551 0.213 1630 0.630 2281 0.882
Random-05 800 2000 3050 1 155 0.050 1651 0.541 2669 0.875
Sortation 10000 5000 | 152714 1 70798 0.464 | 144616 0.946 | 148828 0.975
Warehouse 10000 5000 | 154834 1 51881 0.335 | 141110 0.911 | 149526 0.966
Total ‘ 365904 9.881 ‘ 153246 4.648 ‘ 338296 8.332 ‘ 355657 9.494

required to determine the next action. For the PIBT+traffic
flow algorithm, EPIBT+LNS, and WPPL, the average time
to compute one step is 1 second, as these algorithms con-
tinue to improve the solution as long as time permits. The
graphs indicate that our solver, EPIBT+LNS+GG, outper-
forms all baselines, including last year’s winner, WPPL.
Comparing the results of the original PIBT approach and
EPIBT, it is evident that EPIBT requires more time to make a
decision, especially on random-32-32-20 and brc202d maps.
This difference is explained by high congestion on these
maps, which cannot be resolved by Graph Guidance. As a
result, the approach runs many recursion calls to resolve
collisions between agents. On the warehouse map, Graph
Guidance is able to reduce congestion more efficiently. As
a result, the decision time of EPIBT+GG is much closer to
PIBT and also significantly lower than EPIBT, especially on
instances with a high number of agents (8,000 and more).
At the same time, Graph Guidance has no impact on PIBT
in terms of decision time. This can be explained by the fact
that PIBT makes single-action steps and has much fewer re-
cursion calls and overall collisions than EPIBT. As a result,
better distribution of agents on the map has an impact in
terms of throughput, but not in terms of runtime.

Figures 3 and 4 show the heatmaps of waiting agents. The
redder the cell, the more time any agent occupied this cell
and performed a wait action in it. The absence of Graph
Guidance results in high congestion in the middle of the map
in the case of the warehouse and in some areas near nar-
row corridors in the case of the brc202d map. Agents can-
not find collision-free actions and have to wait in place in
such cases, which heavily impacts the overall performance
of the system and reduces throughput. It is also worth not-
ing that such behavior appears in most existing LMAPF and
MAPD solvers that utilize windowed or reactive planning,
especially when episodes are run not for 100-200 timesteps,
but for thousands, as in the competition setting.

The last series of experiments were conducted on in-
stances from the competition, after their public release.

Here we evaluated the basic PIBT approach, EPIBT, and
EPIBT+LNS. +GG is omitted as all approaches utilized it.
The results of this experiment are shown in Table 2. For the
competition results column, we took a compilation of the
best achieved results from multiple attempts. Thus, the de-
picted results are slightly higher than the best attempt on the
competition leaderboard. We disabled all tweaks and opti-
mizations made for specific instances, such as various tie-
breaking for operations, random length of operations, etc.
Here EPIBT utilized operations of only length 4 as they
showed the best results when considering operations of only
one length. Still, the presented approach with “general” pa-
rameters for all instances is able to achieve a score of 9.494,
which is higher than any other score achieved by other par-
ticipants in the competition.

Conclusion

In this work, we have described the workings of our solver,
which enabled us to win the League of Robot Runners
2024 competition. The core feature of our solution is an
enhanced version of the PIBT algorithm that considers se-
quences of operations rather than single actions, allowing
for efficient resolution of collisions between agents with
action models that require rotations. Our solver is further
complemented by a graph guidance technique and large
neighborhood search optimization to enhance the solution
even more. The external experimental evaluation demon-
strates that our solver outperforms all existing state-of-the-
art LMAPF/MAPD solvers. We believe there is still signif-
icant room for improvement in our approach and in MAPD
solvers in general.

random-32-32-20

o brc202d
Size: 32x32 Size: 530x481
[V|=43151
warehouse
Size: 140x500
|V|=38586

™

6 .
5 -

5

o

) 44—

=}

o

<

'_

2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

10° {$—p—b—p—b—b——%| 10° - 103 {4
£
— 102 i
g 102 4 107 4
£
c
o
@ 10" 4
@
a 101 4 10? 4

100 .

200 400 600 800 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Number of Agents Number of Agents Number of Agents
—@— EPIBT+LNS+GG —#— EPIBT+GG —#— PIBT+GG WPPL+GG
EPIBT+LNS —&— EPIBT —— PIBT —&— PIBT+traffic flow

Figure 2: The X-axis graphs show the number of agents. Vertically, from top to bottom, there is information about the map, the
map itself, then the bandwidth graph for each algorithm, then the average time to calculate one step.

EPIBT+LNS+GG EPIBT+LNS

EPIBT+GG EPIBT

PIBT+GG PIBT

0.4

PIBT+traffic flow

WPPL+GG

r0.2

-,

Figure 3: Comparison of the algorithms in the Warehouse with 10k agents. The heatmap shows the wait action usage (the
number of steps agents wait in each vertex). The red color indicates areas with high traffic.

EPIBT+LNS+GG EPIBT+GG PIBT+GG WPPL+GG

g+

EPIBT+LNS EPIBT PIBT +traffic flow
<k
0.2
-,

Figure 4: Comparison of the algorithms in the Game (brc202d) with 3k agents. The heatmap shows the wait action usage (the
number of steps agents wait in each vertex). The red color indicates areas with high traffic.

References

Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014.
Suboptimal variants of the conflict-based search algorithm
for the multi-agent pathfinding problem. In Proceedings of
the international symposium on combinatorial Search, vol-
ume 5, 19-27.

Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Betzalel, O.;
Tolpin, D.; and Shimony, E. 2015. Icbs: The improved
conflict-based search algorithm for multi-agent pathfinding.
In Proceedings of the International Symposium on Combi-
natorial Search, volume 6, 223-225.

Chan, S.-H.; Chen, Z.; Guo, T.; Zhang, H.; Zhang, Y.; Hara-
bor, D.; Koenig, S.; Wu, C.; and Yu, J. The league of robot
runners competition: Goals, designs, and implementation. In
ICAPS 2024 System’s Demonstration track.

Chen, Z.; Harabor, D.; Li, J.; and Stuckey, P. J. 2024. Traf-
fic flow optimisation for lifelong multi-agent path finding.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, 20674-20682.

De Wilde, B.; Ter Mors, A. W.; and Witteveen, C. 2014.
Push and rotate: a complete multi-agent pathfinding algo-
rithm. Journal of Artificial Intelligence Research 51:443—
492.

Geft, T., and Halperin, D. 2022. Refined hardness of
distance-optimal multi-agent path finding. In Proceedings
of the 21st International Conference on Autonomous Agents
and Multiagent Systems, 481-488.

Huang, T.; Li, J.; Koenig, S.; and Dilkina, B. 2022. Anytime
multi-agent path finding via machine learning-guided large
neighborhood search. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 36, 9368-9376.

Huang, T.; Dilkina, B.; and Koenig, S. 2021. Learning node-
selection strategies in bounded suboptimal conflict-based
search for multi-agent path finding. In International joint
conference on autonomous agents and multiagent systems
(AAMAS).

Jiang, H.; Zhang, Y.; Veerapaneni, R.; and Li, J. 2024.
Scaling lifelong multi-agent path finding to more realistic
settings: Research challenges and opportunities. In Pro-

ceedings of the International Symposium on Combinatorial
Search, volume 17, 234-242.

Kuhn, H. W. 1955. The hungarian method for the assign-
ment problem. Naval Research Logistics Quarterly 2(1-
2):83-97.

Lam, E.; Le Bodic, P; Harabor, D.; and Stuckey, P. J.
2022. Branch-and-cut-and-price for multi-agent path find-
ing. Computers & Operations Research 144:1058009.

Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S.
2019. Improved heuristics for multi-agent path finding with
conflict-based search. In IJCAI, volume 2019, 442—449.

Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig,
S. 2022. Mapf-Ins2: Fast repairing for multi-agent path
finding via large neighborhood search. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36,
10256-10265.

Li, J.; Ruml, W.; and Koenig, S. 2021. Eecbs: A bounded-
suboptimal search for multi-agent path finding. In Proceed-

ings of the AAAI conference on artificial intelligence, vol-
ume 35, 12353-12362.

Okumura, K.; Machida, M.; Défago, X.; and Tamura, Y.
2022. Priority inheritance with backtracking for iterative
multi-agent path finding. Artificial Intelligence 310:103752.

Okumura, K. 2023. Lacam: Search-based algorithm for
quick multi-agent pathfinding. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, 11655—
11662.

Okumura, K. 2024. Engineering lacam*: Towards real-
time, large-scale, and near-optimal multi-agent pathfinding.
In Proceedings of the 23rd International Conference on Au-
tonomous Agents and Multiagent Systems, 1501-1509.

Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial intelligence 195:470-495.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial intelligence 219:40-66.

Skrynnik, A.; Andreychuk, A.; Nesterova, M.; Yakovlev, K.;
and Panov, A. 2024. Learn to follow: Decentralized lifelong
multi-agent pathfinding via planning and learning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 38, 17541-17549.

Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; et al.
2019. Multi-agent pathfinding: Definitions, variants, and
benchmarks. In Proceedings of the International Symposium
on Combinatorial Search, volume 10, 151-158.

Zhang, Y.; Jiang, H.; Bhatt, V.; Nikolaidis, S.; and Li, J.
2024. Guidance graph optimization for lifelong multi-agent
path finding. In Proceedings of the Thirty-Third Interna-
tional Joint Conference on Artificial Intelligence, 311-320.

