
Adaptive Congestion-Based Algorithms for Multi-Goal Task Assignment and Path
Finding in Large-Scale Multi-Agent Systems

Ye Gao1, Hang Ding2, Yuxuan Wang3, Junjie Zhang4, Qian Sun5, Qian Zhang6, Yiwen Huang7,
Mao Luo8, Zhouxing Su9, Junwen Ding10, Zhipeng Lü11

1School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
2,8School of Computer Science, Hubei University of Technology, Wuhan, China

3,4,5,6,7,9,10,11School of Computer Science, Huazhong University of Science and Technology, Wuhan, China
gaoye@hust.edu.cn, 102411256@hbut.edu.cn, yxuanwkeith@outlook.com, junjie zhang@hust.edu.cn,

2500658103@qq.com, nana 103@163.com, 453992179@qq.com, luomao@hbut.edu.cn, suzhouxing@hust.edu.cn,
junwending@hust.edu.cn, zhipeng.lv@hust.edu.cn

Abstract

The Multi-Goal Task Assignment and Path Finding (MG-
TAPF) problem involves coordinating a team of agents to ex-
ecute a set of tasks, each characterized by a specific release
time and an ordered sequence of goal locations. Completing
a task requires an agent to visit all the goal locations in the
prescribed order, starting no earlier than the release time of
the task, while avoiding collisions with other agents. The core
challenge lies in efficiently assigning tasks to agents and plan-
ning collision-free paths for their execution.
Traditional approaches to the Task Assignment and Path
Finding (TAPF) problem often fail to achieve timely and ef-
ficient task assignment, especially in large-scale multi-agent
systems. To address this limitation, we propose several adap-
tive congestion-based methods that enable rapid task assign-
ment under tight time constraints in scenarios involving large
numbers of agents and tasks. These methods estimate the de-
lay each free agent would incur in completing each available
task by assessing congestion around the task’s first goal lo-
cation, leveraging this delay to predict task completion times
across all agents.
Experimentally, our approaches demonstrate the best perfor-
mance on large-scale instances, highlighting their effective-
ness in addressing the complexities of MG-TAPF. We earn
second place on the Task Scheduling Track of 2024 League
of Robot Runners (LoRR) competition.

Introduction
Multi-Agent Path Finding (MAPF) is the problem of find-
ing conflict-free paths for multiple agents to move from their
start locations to their goals while minimizing the total travel
times of all agents (Stern et al. 2019). MAPF has a wide va-
riety of real-world applications, including unmanned aerial
vehicle management (Ho et al. 2019), video game action
planning (Ma et al. 2017b), and automated warehouse op-
eration (Li et al. 2021; Varambally, Li, and Koenig 2022).

A specialized variant of MAPF is the Combined Target
Assignment and Path Finding (TAPF) problem, which in-
tegrates the assignment of target locations to agents with
the planning of collision-free paths to these targets (Ma
and Koenig 2016). Another similar variant is Multi-Agent

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Pickup-and-Delivery (MAPD), in which each agent under-
takes tasks characterized by pickup locations, delivery des-
tinations, and release times.

The Multi-Goal Task Assignment and Path Finding (MG-
TAPF) problem further refines TAPF by introducing tasks
with ordered sequences of goal locations and release times.
For successful task execution, agents must visit each goal
location of the task sequentially, starting no earlier than its
release time, while strictly avoiding collisions with other
agents.

During the past decades, many efforts have been made to
handle task assignment in TAPF. For example, Ma et al. (Ma
et al. 2017a) proposed using the Hungarian method (Kuhn
1955) to assign tasks. However, previous methods may fail
to solve the problem within a reasonable time, thus limiting
the overall effectiveness of large-scale multi-agent systems.

Therefore, the League of Robot Runners competition
(LoRR 2024), sponsored by Amazon Robotics, was orga-
nized online in 2024 to examine more challenging MG-
TAPF settings, including a large number of agents of up to
10,000 and limited planning time (including task schedul-
ing and path planning) of 1 second per timestep. Inspired by
these challenges, we propose several adaptive congestion-
based methods that improve MG-TAPF performance with
respect to task assignment.

Experimental evaluations on the 10 benchmark instances
of LoRR (LoRR Benchmark 2024) demonstrate the effec-
tiveness of these methods, particularly in large-scale sorta-
tion and warehouse environments, where traditional algo-
rithms often falter.

Related Work
The TAPF problem is a combination of task assignment and
path finding. So TAPF methods can be categorized into cou-
pled and decoupled approaches. Coupled approaches con-
sider task assignment and path planning jointly. Ma and
Koenig (2016) present the CBM (Conflict-Based Min-Cost-
Flow) algorithm, which is a hierarchical algorithm that uses
CBS to resolve conflicts among agent teams at the high
level and the min-cost max-flow algorithm to assign tar-
gets and plan paths at the low level. Nguyen et al. (2019)
solved MAPF with answer set programming. Hönig et al.

(2018) proposed CBS-TA, which solves the problem opti-
mally by extending CBS to operate on a search forest. Zhong
et al. (2022) proposed Conflict-Based Search with Task As-
signment with Multi-Label A* algorithm (CBS-TA-MLA),
which uses CBS-TA (Hönig et al. 2018) on the high level
and MLA* (Grenouilleau, Van Hoeve, and Hooker 2019) on
the low level. Tang et al. (2023) developed Incremental Tar-
get Assignment CBS (ITA-CBS) to avoid computing K-best
assignments, thus running faster than CBS-TA.

Decoupled approaches consider task assignment and path
planning independently. Ma et al. (2017a) proposed CEN-
TRAL algorithm, which used the Hungarian method (Kuhn
1955) to assign tasks and Conflict-Based Search (Sharon
et al. 2015) to plan paths. Liu et al. (2019) computed task
sequence for each agent by solving a special traveling sales-
man problem and then planned paths according to these task
sequences. Kou et al. (2020) presented algorithms based on
a min-cost max-flow formulation that minimizes the total
idle time of stations. Xu et al. (2022) proposed LNS-PBS al-
gorithm, which used Large Neighborhood Search (LNS) to
assign tasks and Priority Based Search (PBS) to plan paths.

Problem Definition
MAPF
Let G = (V,E) be a connected graph, where the set of ver-
tices V contains all possible locations of agents and the set
of edges E contains all connections between adjacent loca-
tions. If G is a grid map, a cell is called an obstacle if it is
blocked. Let A = {a1, a2, . . . , a|A|} be a set of agents. Let
loc(ai, t) ∈ V denote the location of agent ai at discrete
timestep t ∈ N . Each agent ai has a unique parking loca-
tion pi ∈ V assigned to it and starts at pi at time step 0. At
each timestep, an agent can move to an adjacent vertex, i.e.,
(loc(ai, t), loc(ai, t + 1)) ∈ E; or wait at its current loca-
tion, i.e., loc(ai, t) = loc(ai, t + 1). If G is a 4-neighbor
grid map, an agent can move forward, backward, left, right,
or stay.

A feasible action of an agent should avoid the following
two types of conflicts. (1) A vertex conflict occurs when two
agents ai, aj occupy the same location at the same timestep,
i.e., loc(ai, t) = loc(aj , t). (2) An edge conflict occurs when
two agents ai, aj traverse the same edge from opposite di-
rections at the same time, i.e., loc(ai, t) = loc(aj , t + 1) ∧
loc(ai, t+ 1) = loc(aj , t).

Path πi is a sequence of agent ai’s actions from one loca-
tion to another. l(πi) is the length of the path. The distance
d(x, y) from vertex x to vertex y is the length of the shortest
path from x to y. A path is feasible if and only if its actions
are all feasible. A solution is a set of conflict-free paths that
navigate all agents from their start locations to their goal lo-
cations. The objective of MAPF is to find a solution with the
minimum sum of individual costs (SIC), i.e., the sum of the
path lengths of all agents.

MAPF with Rotations
MAPF with rotation is a variant of MAPF with different
agent states and actions. Each agent has an orientation o ∈
{East, South,West,North}. At each step, an agent can

move forward to an adjacent vertex, rotate 90◦ clockwise,
rotate 90◦ counterclockwise, or stay at its current vertex.

MG-TAPF
Let T = {τ1, τ2, . . . , τ|T |} be a set of tasks, where each
task τj ∈ T has an ordered sequence of goal locations
{gj1, g

j
2, ..., g

j
k} and a release time ri ∈ N. A task is open

if one or more goals in the sequence have been visited. Once
open, a task cannot be reassigned to another agent. We de-
fine task distance d(τj) as the sum of the distances between
consecutive goal locations of the task

∑k−1
i=0 d(gji , g

j
i+1). We

define agent-task distance d(ai, τj) as the distance between
the current location of agent ai and the first goal location of
task τj .

An agent that is not executing a task is called a free agent;
otherwise, it is called an occupied agent. Each free agent
can be assigned any task τj that is not open. To complete
a task, the agent needs to visit all the goal locations of this
task in order. It must be at the first goal location at or after
the release time rj to start this task. When it reaches the last
goal location, it completes its task and is called a free agent
again.

Competition Problem
The problem given in the LoRR 2024 competition is a com-
bination of MAPF with Rotations and MG-TAPF. In addi-
tion, tasks do not have prescribed release times. When an
old task is completed, a new task is revealed. Each free agent
can be assigned at most one task. The objective of the com-
petition problem is to complete as many tasks as possible by
a given timestep.

There are three evaluation tracks. The Task Scheduling
Track uses a default path planner (Chen et al. 2024) and
requires participants only to design the task scheduler. The
Path Planning Track uses a default task scheduler (see Al-
gorithm 1) and requires participants only to design the path
planner. The Combined Track requires participants to design
both the task scheduler and the path planner.

Timestep is set to 1 second. At the end of each timestep,
the planner and scheduler must return valid path plans and
valid task assignments.

Congestion-Based Approach
The organizers of LoRR 2024 provide a priority-based
greedy task assignment method, illustrated in Algorithm 1.
The initial steps involve updating the sets of free agents A0

and free tasks T0 by including new free agents and tasks
(Lines 1-2). The task scheduler then assigns tasks to agents
sequentially based on their IDs (Line 3), ensuring that the
process terminates if the allocated time runs out (Lines 4-6).
For each free agent, a free task with the minimum estimated
completion distance is selected, calculated as the sum of the
agent-task distance and the task distance (Lines 8-14). Once
a task is assigned to an agent, both the agent and the task are
removed from their respective sets (Lines 15-17).

However, the greedy method has limitations in accurately
estimating task completion time. The estimation approxi-
mates the minimum task completion distance as task dura-

Algorithm 1: Priority-Based Greedy Task Assignment
Input: free agent set A0, free task set T0

Output: task assignment result
1: A0 := A0 ∪ {newFreeAgents}
2: T0 := T0 ∪ {newFreeTasks}
3: for ai ∈ A0 do
4: if time runs out then
5: break
6: end if
7: minTaskDuration := IntMax
8: for τj ∈ T0 do
9: taskDuration := d(ai, τj) + d(τj)

10: if taskDuration < minTaskDuration then
11: τmin := τj
12: minTaskDuration := taskDuration
13: end if
14: end for
15: assign τmin to ai
16: A0 := A0 − {ai}
17: T0 := T0 − {τmin}
18: end for

tion (Line 9 in Algorithm 1), which neglects delays caused
by the need to avoid collisions with other agents during task
execution. Tasks with shorter estimated distances might take
longer due to traffic jams in congested areas.

To address this, we developed several adaptive
congestion-based methods to estimate the agent-task
delay, which is defined as the difference between the
minimum time an agent required to complete a task and the
actual time an agent consumed to complete a task, while
the minimum time an agent required to complete a task
is the sum of agent-task distance and task distance. The
framework of the congestion-based approach is shown in
Algorithm 2. They all estimate the agent-task delay based
on the congestion level around the first goal location of
the task (Line 13), and their differences lie in the regions
and counting objects chosen for congestion evaluation.
The estimated delay value, as a penalty, is then added to
the minimum task completion distance to provide a more
accurate estimate of task duration (Line 14).

The adaptive congestion coefficient γ is calculated based
on all the finished tasks in the past. γ is calculated using the
difference between the sum of actual duration of the com-
pleted tasks and the sum of previous estimated minimum du-
rations of the completed tasks, divided by the total number
of the completed tasks (Line 3-5). This ensures dynamic and
context-aware adjustment of congestion impact, improving
task assignment efficiency.

Count Agent in Task-Agent Circle
Count Agent in Task-Agent Circle (CATAC) evaluates con-
gestion around each free task by defining an task-agent circle
centered at the task’s first goal location with a radius equal to
the agent-task distance. The number of other agents within
this circle is counted (as shown in Figure 1 and Algorithm 3).
The key insight here is that a higher number of other agent

Algorithm 2: Adaptive Congestion-Based Task Assignment
Input: free agent set A0, free task set T0

Output: task assignment result
1: A0 := A0 ∪ {newFreeAgents}
2: T0 := T0 ∪ {newFreeTasks}
3: totalActualDuration += newCompletedActualDuration
4: totalMinTaskDuration += newCompletedMinTaskDu-

ration
5: γ := (totalActualDuration - totalMinTaskDuration) /

numTaskFinished
6: for ai ∈ A0 do
7: if time runs out then
8: break
9: end if

10: minTaskDuration := IntMax
11: for τj ∈ T0 do
12: taskDist := d(ai, τj) + d(τj)
13: ∆ = γ· AdaptiveEvaluateCongestion(ai, τj)
14: taskDuration := taskDist + ∆
15: if taskDuration < minTaskDuration then
16: τmin := τj
17: minTaskDuration := taskDuration
18: end if
19: end for
20: assign τmin to ai
21: A0 := A0 − {ai}
22: T0 := T0 − {τmin}
23: end for

within the task-agent circle can lead to increased delays for
the free agent as it navigates toward the first goal location of
the task.

Algorithm 3: Count Agent in Task-Agent Circle
Input: agent ai, task τj
Output: congestion

1: congestion := number of agents in the task-agent circle

Count Intersections between Agent-Task and
Agent-Goal

The agent-task vector represents the vector from the current
location of the free agent to the first goal location of the
task, while the agent-goal vector represents the vector from
the current location of the occupied agent to the next goal
location. The key insight here is that a higher number of
intersection points between an agent-task vector and multi-
ple agent-goal vectors can lead to increased delays for the
free agent as it navigates toward the first goal location of the
task. Thus, we introduce the Count Intersections between
Agent-Task and Agent-Goal (CIATAG) as a metric to quan-
tify congestion. CIATAG calculates the number of intersec-
tion points between a specified free agent-task vector and
the agent-goal vectors of occupied agents. This approach is
illustrated in Figure 2 and is detailed in Algorithm 4.

a1

a2

a3

a4

a5

a6

a7
a8

g12

Figure 1: This figure shows congestion computation when
agent a1 selects task τ2. Circles with solid lines represent
agents’ current locations. The square containing g21 represent
the first goal location of τ2. Draw a circle with the first goal
location g21 of τ2 as the center and the agent-task distance
d(a2, τ2) as the radius. Count the number of other agents
in this circle. There are 3 other agents in the circle range,
namely a2, a3 and a4.

Algorithm 4: Adaptive Delay Estimation Current First Goal
Intersect Current Goal
Input: agent ai, task τj
Output: congestion

1: congestion := number of intersection points between
selected free agent-task vector and occupied agent-goal
vectors

Count Agent in the Task Square
In Algorithm 3 we count the number of agents in the task-
agent circle to estimate the delay of each free agent in com-
pleting each free task. However, because the distance (repre-
senting the radius of the circle) between each free agent and
each free task can vary, this requires counting agents across
|A0| × |T0| circles, where |A0| is the number of free agents
and |T0| is the number of free tasks. This results in ineffi-
ciency when the number of free agents exceeds 1,000. To
address this challenge, we introduce the Count Agent in the
Task Square (CATS), as detailed in Algorithm 5.

Rather than dynamically calculating circles, CATS di-
vides the map into fixed k × k square regions, as shown
in Figure 3. We define the square containing the task’s first
goal location as the task square. At each timestep, CATS
determines the task square of each free task and counts the
number of agents within that square (Lines 6-7) before it-
erating over each free agent. An intuition is that a higher

a1

a2
a3a4

a5 a6

g12

a2
a3

a4

a5

a6

Figure 2: This figure shows congestion computation when
agent a1 selects task τ2. Circles with solid lines represent
agents’ current locations. Circles with dashed lines repre-
sent agents’ next goals. The square containing g21 repre-
sent the first goal location of τ2. Draw agent-goal vectors
from the current location of each agent to its next goal.
Draw a vector from the current location of a2 to the first
goal location g21 of τ2. Count the number of intersection
points between vector < loc(a2), loc(p2) > and the occu-
pied agent-goal vectors. There are 3 intersection points be-
tween vector < a2, p2 > with occupied agent-goal vectors,
namely < loc(a2), goal(a2) >, < loc(a3), goal(a3) > and
< loc(a4), goal(a4) >.

number of other agent within the task square can lead to in-
creased delays for the free agent as it navigates toward the
first goal location of the task. Because these square bound-
aries are static, the computed agent counts for a square apply
to all free agents estimating congestion in that range. This
significantly reduces computational overhead by avoiding
repetitive calculations, thus improving efficiency, especially
in scenarios with a large number of agents and tasks.

Task Square Density Times Agent-Task Distance
The Task Square Density Times Agent-Task Distance (TSD-
TATD) method modifies the Count Agent in the Task Square
(CATS) approach by explicitly considering the impact of
static obstacles on congestion. While CATS estimates the
delay of free agents completing tasks by counting the num-
ber of agents in the square region where the task’s first goal
point is located, it overlooks static obstacles that can signif-
icantly influence congestion and delay. In TSDTATD, both
the number of agents and static obstacles are taken into ac-
count, as illustrated in Figure 4 and Algorithm 6. An intu-
ition is that a higher number of other agent and a lower num-
ber of static obstacle within the square can lead to increased
delays for the free agent as it navigates toward the first goal
location of the task.

To compute congestion, agent density (denoted as ρ) is
calculated as the ratio of the number of agents in the square

Algorithm 5: Count Agent in the Task Square
Input: agent ai, task τj
Output: congestion

1: A0 := A0 ∪ {newFreeAgents}
2: T0 := T0 ∪ {newFreeTasks}
3: totalActualDuration += newCompletedActualDuration
4: totalMinTaskDuration += newCompletedMinTaskDu-

ration
5: γ := (totalActualDuration - totalMinTaskDuration) /

numTaskFinished
6: count the number of agent in each square
7: compute each free task first goal in which square
8: for ai ∈ A0 do
9: if time runs out then

10: break
11: end if
12: minTaskDuration := IntMax
13: for τj ∈ T0 do
14: taskDist := d(ai, τj) + d(τj)
15: ∆ = γ numAgentInTaskSquare
16: taskDuration := taskDist + ∆
17: if taskDuration < minTaskDuration then
18: τmin := τj
19: minTaskDuration := taskDuration
20: end if
21: end for
22: assign τmin to ai
23: A0 := A0 − {ai}
24: T0 := T0 − {τmin}
25: end for

a1

a2

a3

a4

a5

a6

g12

Figure 3: This figure shows congestion computation when
agent a1 selects task τ2. Circles with solid lines represent
agents’ current locations. The square containing g21 represent
the first goal location of τ2. Squares with dashed lines repre-
sent ranges divided on the map. Count the number of other
agents in the square where the first goal g21 of τ2 is located.
There are 3 other agents in the first goal square, namely a2,
a3 and a5.

to the number of blank cells within the square, where blank
cells refer to cells not occupied by obstacles (Line 1). A
greater number of static obstacles reduces the number of
blank cells, thereby increasing agent density and contribut-
ing to delays in task completion. To maintain dimensional
consistency with delays, the agent density is multiplied by
the distance between the current location of the agent and
the first goal location of the task (Line 2).

Algorithm 6: Task Square Density Times Agent-Task Dis-
tance
Input: agent ai, task τj
Output: congestion

1: ρ = numAgentInTaskSquare / (numCellsInPickup-
Square - numObstaclesInPickupSquare)

2: congestion = ·ρ · d(loc(ai), loc(pj))

Experiments
To evaluate the effectiveness of our congestion-based ap-
proaches (CATAC, CIATAG, CATS, and TSDTATD), we
compared them with three task assignment algorithms: the
default priority-based Greedy algorithm, the CENTRAL al-
gorithm (Ma et al. 2017a), and No Man’s Sky (NMS), a
method developed by the team that secured the first place
on the task scheduler track. The partition square size used
in CATS and TSDTATD is set to 12x12. Due to compu-
tational constraints, algorithms mentioned in Related Work

a1

a2

a3

a4

a5

a6

g12

Figure 4: This figure shows congestion computation when
agent a1 selects task t2. Circles with solid lines represent
agents’ current locations. The square containing g21 repre-
sent the first goal location of τ2. Black squares represent
static obstacles in the map. Squares with dashed lines repre-
sent ranges divided on the map. Count the number of other
agents in the square where the first goal g21 of τ2 is located.
There are 3 other agents and 3 static obstacles in the first
goal square.

are excluded as they cannot complete task assignment within
the one-second limit. All the above task assignment algo-
rithms share the default path planner (Chen et al. 2024).
They are coded in in C++ and tested on an Ubuntu 22.04
server with an Intel Xeon Gold 6133 CPU@2.50GHz pro-
cessor and 125GiB RAM. All algorithms are executed 3
times on each instance. The implementations are publicly
available at https://github.com/ssfc/LoRR2024-verstand.

To ensure consistency with the LoRR evaluation platform,
the tests are conducted across 10 main round instances pro-
vided by the organizers: RANDOM-01 to RANDOM-05
(small-scale), CITY-01 and CITY-02 (medium-scale), and
GAME, SORTATION, and WAREHOUSE (large-scale).
The agent number for each instance and the simulation
timesteps are shown in Table 1. The maps used ranged from
32x32 obstacle-rich grids to complex simulated environ-
ments such as city sections, video games, and synthetic ful-
fillment centers.

The results in Table 1 highlight significant differences in
algorithm performance across instance scales. CENTRAL
performed optimally on small-instance maps and CITY-01
but faltered when the number of agents exceeded 3,000 in
CITY-02, exposing limitations in handling high-density en-
vironments. NMS exhibited consistent strength on small-
and medium-scale instances, achieving the best results in
CITY-02, which showcased its adaptability.

For large-scale instances, congestion-based algorithms

demonstrated outstanding performance. CATAC consis-
tently outperformed Greedy in small- and medium-scale set-
tings, but lagged behind CENTRAL and NMS. CIATAG
achieved top results on the GAME map, benefiting from its
ability to model vector intersection points, a distinctive fea-
ture of GAME’s complex traffic dynamics. CATS ranked
highest on SORTATION and second on WAREHOUSE,
while TSDTATD excelled on WAREHOUSE and performed
competitively in SORTATION. Both underscore their effec-
tiveness in high-traffic synthetic environments. This is be-
cause in scenarios where large-scale agents or insufficient
computational time pose challenges, rule-based methods
have an advantage over search-based methods (CENTRAL
and NMS). It also indicates that in cases of heavy traffic,
congestion-based methods can better reflect the agent-task
delay, thereby assigning more appropriate tasks to agents.

Conclusion
In this work, we introduce an adaptive congestion-based al-
gorithm to enhance task assignment performance in large-
scale multi-agent systems. We present four metrics to evalu-
ate congestion, namely CATAC, CIATAG, CATS, and TS-
DTATD. By incorporating these metrics, the congestion-
based methods can more accurately predict task comple-
tion times, especially in high-density environments, by re-
flecting real-time traffic conditions. Our experimental results
demonstrate that these methods outperform traditional algo-
rithms in scenarios with heavy traffic, offering significant
potential for practical applications in automated warehous-
ing and sorting centers.

References
Chen, Z.; Harabor, D.; Li, J.; and Stuckey, P. J. 2024. Traf-
fic flow optimisation for lifelong multi-agent path finding.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, 20674–20682.
Grenouilleau, F.; Van Hoeve, W.-J.; and Hooker, J. N. 2019.
A multi-label A* algorithm for multi-agent pathfinding. In
Proceedings of the international conference on automated
planning and scheduling, volume 29, 181–185.
Ho, F.; Goncalves, A.; Salta, A.; Cavazza, M.; Geraldes, R.;
and Prendinger, H. 2019. Multi-agent path finding for UAV
traffic management: Robotics track.
Hönig, W.; Kiesel, S.; Tinka, A.; Durham, J.; and Ayanian,
N. 2018. Conflict-based search with optimal task assign-
ment. In Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems.
Kou, N. M.; Peng, C.; Ma, H.; Kumar, T. S.; and Koenig, S.
2020. Idle time optimization for target assignment and path
finding in sortation centers. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, 9925–9932.
Kuhn, H. W. 1955. The Hungarian method for the assign-
ment problem. Naval research logistics quarterly, 2(1-2):
83–97.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. S.; and
Koenig, S. 2021. Lifelong multi-agent path finding in large-
scale warehouses. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, 11272–11281.

Table 1: The number of tasks completed by each approach during the simulation time on main round instances. If an algorithm
fails to complete a task within the given time limit, the corresponding column is marked as ’timeout’.

Agents SimTime Greedy CENTRAL NMS CATAC CIATAG CATS TSDTATD

RANDOM-01 100 600 490 573 571 555 549 490 539
RANDOM-02 200 600 780 925 935 887 871 771 857
RANDOM-03 400 800 972 1202 1220 1118 1075 943 1098
RANDOM-04 700 1000 745 888 875 767 765 754 777
RANDOM-05 800 2000 1122 1320 1386 1183 1154 1052 1185
CITY-01 1500 3000 6119 7197 7359 7008 7029 6130 6383
CITY-02 3000 3000 11372 2249 14030 12870 10431 11563 12259
GAME 6500 5000 6195 2562 7045 8061 9003 6024 6706
SORTATION 10000 5000 84686 timeout 17276 4744 9509 93597 89104
WAREHOUSE 10000 5000 62539 timeout 44350 4720 9462 71760 75475

Liu, M.; Ma, H.; Li, J.; and Koenig, S. 2019. Task and path
planning for multi-agent pickup and delivery. In Proceed-
ings of the International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS).
LoRR. 2024. The League of Robot Runners. https://www.
leagueofrobotrunners.org/. Accessed: 2025-05-10.
LoRR Benchmark. 2024. LoRR 2024 Benchmark.
https://github.com/MAPF-Competition/Benchmark-
Archive/tree/main/2024%20Competition. Accessed:
2025-05-21.
Ma, H.; and Koenig, S. 2016. Optimal target assign-
ment and path finding for teams of agents. arXiv preprint
arXiv:1612.05693.
Ma, H.; Li, J.; Kumar, T.; and Koenig, S. 2017a. Life-
long multi-agent path finding for online pickup and delivery
tasks. arXiv preprint arXiv:1705.10868.
Ma, H.; Yang, J.; Cohen, L.; Kumar, T.; and Koenig, S.
2017b. Feasibility study: Moving non-homogeneous teams
in congested video game environments. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment, volume 13, 270–272.
Nguyen, V.; Obermeier, P.; Son, T.; Schaub, T.; and Yeoh,
W. 2019. Generalized target assignment and path finding
using answer set programming. In Proceedings of the Inter-
national Symposium on Combinatorial Search, volume 10,
194–195.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial intelligence, 219: 40–66.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Boyarski, E.; and Bartak, R. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. Symposium on Com-
binatorial Search (SoCS), 151–158.
Tang, Y.; Ren, Z.; Li, J.; and Sycara, K. 2023. Solving
multi-agent target assignment and path finding with a single
constraint tree. In 2023 International Symposium on Multi-
Robot and Multi-Agent Systems (MRS), 8–14. IEEE.
Varambally, S.; Li, J.; and Koenig, S. 2022. Which MAPF
model works best for automated warehousing? In Pro-

ceedings of the international symposium on combinatorial
search, volume 15, 190–198.
Xu, Q.; Li, J.; Koenig, S.; and Ma, H. 2022. Multi-goal
multi-agent pickup and delivery. In 2022 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
9964–9971. IEEE.
Zhong, X.; Li, J.; Koenig, S.; and Ma, H. 2022. Optimal and
bounded-suboptimal multi-goal task assignment and path
finding. In 2022 International Conference on Robotics and
Automation (ICRA), 10731–10737. IEEE.

